M-math 2nd year Final Exam Subject : Fourier Analysis

Time : 3.00 hours Max.Marks 60. Answer any two questions from each part. Contact : rajeevbee@hotmail.com

Part A

1. Let $f(t) := \int_{-\pi}^{t} f'(s) ds$ where f'(s) is continuous on $[-\pi, \pi]$. Show that $\lim_{n \to \infty} S_n f(t) = f(t)$ for every $t \in (-\pi, \pi]$, where $S_n f(t) = f * D_n(t)$ and $D_n(t)$ is the Dirichlet kernel. (15)

2. With the $S_n f$ as above, and $f \in L^1$ show that

η

$$\lim_{n \to \infty} \int_{a}^{b} S_{n} f(t) dt = \int_{a}^{b} f(t) dt$$

Hint : Consider the Fourier series of $F(t) := \int_{-\pi}^{t} (f(s) - \hat{f}(0)) ds.$ (15)

3. Let $f \in L^2(-\pi,\pi]$. Then show that f is absolutely continuous i.e. $f(t) = \int_{-\pi}^t f'(s) ds$ and $f' \in L^2$ if and only if $\sum_{-\infty}^\infty n^2 |\hat{f}(n)|^2 < \infty$. (15)

Part B

4. Let $f := I_{[a,b]}$. Then show that the Hilbert transform Hf of f is given by $Hf(x) = \frac{1}{\pi} \log \frac{|x-a|}{|x-b|}$ for $x \neq a, b$. Show also that $Hf \notin L^1(\mathbb{R})$. (9+6.)

5. Let M > 0 and $K_M(x) := \frac{1 - \cos 2M\pi x}{2M\pi^2 x^2}, x \neq 0; K_M(0) = M$. Let $f \in L^1(\mathbb{R})$ satisfy $\lim_{M \to \infty} M \| f * K_M - f \|_{L^1} = 0$. Show that f = 0 a.e. Hint : Find an estimate for $|\xi \hat{f}(\xi)|$ in terms of $\| K_M * f - f \|_{L^1}$. (15)

6. Suppose $K_t(x)$ is an approximate identity on \mathbb{R} and t in some index set. Suppose f(x) is a bounded function on \mathbb{R} with $\lim_{x \to 0} f(x) = L$. Show that $\lim_{t \to 0} \int K_t(x) f(x) dx = L$. (15)