M-math 2nd year Final Exam Subject : Fourier Analysis

Time : 3.00 hours
Max.Marks 60.
Answer any two questions from each part. Contact : rajeevbee@hotmail.com

Part A

1. Let $f(t):=\int_{-\pi}^{t} f^{\prime}(s) d s$ where $f^{\prime}(s)$ is continuous on $[-\pi, \pi]$. Show that $\lim _{n \rightarrow \infty} S_{n} f(t)=f(t)$ for every $t \in(-\pi, \pi]$, where $S_{n} f(t)=f * D_{n}(t)$ and $D_{n}(t)$ is the Dirichlet kernel.
2. With the $S_{n} f$ as above, and $f \in L^{1}$ show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{a}^{b} S_{n} f(t) d t=\int_{a}^{b} f(t) d t \tag{15}
\end{equation*}
$$

Hint : Consider the Fourier series of $F(t):=\int_{-\pi}^{t}(f(s)-\hat{f}(0)) d s$.
3. Let $f \in L^{2}(-\pi, \pi]$. Then show that f is absolutely continuous i.e. $f(t)=$ $\int_{-\pi}^{t} f^{\prime}(s) d s$ and $f^{\prime} \in L^{2}$ if and only if $\sum_{-\infty}^{\infty} n^{2}|\hat{f}(n)|^{2}<\infty$.

Part B

4. Let $f:=I_{[a, b]}$. Then show that the Hilbert transform $H f$ of f is given by $H f(x)=\frac{1}{\pi} \log \frac{|x-a|}{|x-b|}$ for $x \neq a, b$. Show also that $H f \notin L^{1}(\mathbb{R})$.
5. Let $M>0$ and $K_{M}(x):=\frac{1-\cos 2 M \pi x}{2 M \pi^{2} x^{2}}, x \neq 0 ; K_{M}(0)=M$. Let $f \in L^{1}(\mathbb{R})$ satisfy $\lim _{M \rightarrow \infty} M\left\|f * K_{M}-f\right\|_{L^{1}}=0$. Show that $f=0$ a.e. Hint: Find an estimate for $|\xi \hat{f}(\xi)|$ in terms of $\left\|K_{M} * f-f\right\|_{L^{1}}$.
6. Suppose $K_{t}(x)$ is an approximate identity on \mathbb{R} and t in some index set. Suppose $f(x)$ is a bounded function on \mathbb{R} with $\lim _{x \rightarrow 0} f(x)=L$. Show that $\lim _{t} \int K_{t}(x) f(x) d x=L$.
